FI975WNRAS. 1737 “183M!

Mon. Not. R. astr. Soc. (1975) 173, 183-206.

AN ANALYSIS OF THE TRANSITS OF MERCURY:
1677-1973

L. V. Morrison and C. G. Ward

Royal Greenwich Observatory, Herstmonceux Castle, Hailsham, East Sussex

(Received 1975 April 3)

SUMMARY

About 2400 observations of the universal times of internal contact for the
transits of Mercuty in the period 1677 to 1973 are compared with the ephemeris
times calculated from the gravitational theories of the motions of Mercury and
the Earth. The O-C differences in the times are attributed to two causes: the
differences between the ephemeris and universal time scales, AT (arising from
the non-uniformity of the Earth’s rate of rotation on its axis) and errors in the
values of the orbital elements in the adopted theory of Mercury’s motion. In
order to separate these two effects, we adopt known estimates of AT derived
previously from observations of the Moon’s motion and solve for corrections
to Mercury’s orbital elements and a term varying with the square of time.
"This last term allows for a possible correction to the value of the tidal accelera-
tion in the lunar theory which is implicit in the derivation of the estimates of
AT from lunar observations. By this method of analysis we find the tidal
acceleration of the Moon to be —26”+2” cy~2, and that the excess of the
observed over the Newtonian value of the motion of Mercury’s perihelion is
+4I”'9i0”'5 Cy—l.

I. INTRODUCTION

Since the transit of Mercury across the Sun’s disc in 1677, observers have
carefully noted the times at which Mercury’s disc apparently touched the limb of
the Sun. These observed times were recorded on time-systems based on the
diurnal rotation of the Earth, which are related to universal time (Greenwich mean
solar time measured from midnight). Variations in the rate of rotation of the Earth
cause the universal time scale to depart from uniformity. However, the argument
of time, usually called ephemeris time, in the gravitational theories of the motions
of the Sun and Mercury, may be regarded as defining a uniform time scale. We
may estimate the difference between the ephemeris and universal time scales (AT')
at the epoch of a transit by subtracting the observed time of the contact of Mercury’s
disc with the limb of the Sun from the time computed from the theories. Inde-
pendently, we can derive AT from a comparison of the observed times of occulta-
tions of stars by the Moon with the computed times on the ephemeris time scale
defined by the argument of time in the gravitational theory of the Moon’s motion.
If the gravitational theories of the Sun, Mercury and the Moon used in the computa-
tions were incompatible, owing to deficiencies in their theories, the two sets of
deduced values of AT would diverge with time. In particular, if the value of the
orbital acceleration in the theory of the Moon’s motion were in error, we would
expect the values of AT deduced from lunar occultations to diverge with the square
of time from those deduced from the transits of Mercury. In this paper we analyse
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these two sets of values of AT in order to check the provisional value of the orbital
acceleration of the Moon’s motion in the theory.

The Moon’s orbital acceleration has a calculable component (+ 14"-28 cy—2),
due to the perturbing effects of the Sun and planets treated as rigid bodies, which
is well determined. Another component, due to causes such as the reaction on the
lunar motion of the tides raised by the Moon on the Earth, is not well determined.
It is this second component which we shall investigate in this paper. We shall
refer to it as the ‘tidal acceleration’. There may be a third component in the
acceleration if the Newtonian constant of gravitation (G) decreases with time. It
can be shown that as a result of our method of analysis the deduced values of AT
would be altered if G were variable, but the value that we derive for the tidal
acceleration would not be affected.

In analysing the data on the transits of Mercury, we must recognize that the
adopted orbital elements of the theories of the Sun and Mercury may be in error,
and that, as a consequence, their computed positions, and hence the estimates of
AT, will include some contribution from these errors. We use the method of
least squares to achieve a partial separation of the effects of errors in the orbital
elements and the effects of the variations in the rate of rotation of the Earth. We
have used nearly all of the original observations of the times of internal contact of
Mercury’s disc with the Sun’s occurring during the transits of 1677 to that of
1973, giving a total of about 2400 observational equations. Less than 1 per cent of
the original observations were rejected in our analysis, which we believe to have
two main advantages over all previous analyses of these data. First, we have used
all the times for each transit, rather than simply the derived means used by previous
authors. Secondly, we have added data from the five transits that have occurred
since the last published analysis in 1943.

The main results of this analysis are twofold:

1. We find a value for the tidal acceleration of the Moon close to that found by
Spencer Jones and Clemence which is used in the current theories.

2. We obtain a correction to the adopted observed value of the motion of the
perihelion of the orbit of Mercury which, when compared with the theoretical one,
based on Newtonian theory, gives an excess motion slightly less than that predicted
on the basis of Einstein’s general theory of relativity.

2. OBSERVATIONS
2.1 Occurrence of transits

Since Mercury’s orbit is inclined at 7° to the ecliptic, transits occur only at the
time of inferior conjunction when the Earth is near the line of nodes of Mercury’s
orbit. The line of nodes regresses slowly on the ecliptic by about 11° per century,
so the Earth passes through the line of nodes on about the same dates every year:
near the beginning of May and November. Mercury passes through its nodal
points on those dates about 14 times in a century.

The lines of apsides of the orbits of the Earth and Mercury also move very
slowly on the ecliptic, and so the configurations of the orbits are nearly identical
for all the transits in the May series, and likewise for those in the November series.
The maximum duration for a central transit in May is about 8 hr, whilst in
November it is about 6 hr.
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2.2 Timing of contacts

All the timings of the internal contacts with the Sun’s disc for the transits of
1677 to 1973 that could be found in astronomical publications were transcribed
from the original sources, except for 50 observations which were taken from
Newcomb’s (1882) work as follows: 1782 (2), 17786 (6), 1789 (6), 1802 (4), 1845 (18)
and 1878 (14). About 2400 observations were transcribed for use in the analysis.
No timings of the external contacts were transcribed for use because these pheno-
mena were judged to be too indefinite to contribute any worthwhile data to our
analysis.

The timings were rounded to the nearest second which, as will be shown later,
is considerably less than the smallest value for the standard deviation (11 s) of the
timings for any particular transit. Following an inspection of the collected times
for each transit, we had little hesitation in rejecting 10 observations which were
over 5 min different from the other observations.

There has been an extensive discussion in the astronomical literature of which
part of the phenomenon observers actually time. We do not enter into this discussion
here, but refer the reader to several places where this subject has been treated
(Paul 1876; Newcomb 1882; Clemence & Whittaker 1942; Wittmann 1974). We
use all the times as if they correspond to the instants at which the centres of the
Sun and Mercury are just separated by the difference of their apparent semi-
diameters. Some observers make a distinction between the time of geometrical
contact and that of the so-called ¢ black drop ’ effect. But most observers do not
report having seen this effect and give the time of contact without qualification.
After inspecting the considerable scatter of the collected timings for each transit,
we decided to use all the timings of internal contacts, irrespective of the observers’
descriptive remarks, except when the observer gave separate times for the geo-
metrical contact and the black drop effect. For these observations we selected the
times for the black drop because we believe that this is a more definite event than
the observed time of geometrical contact which is dependent on the resolution of
the telescope employed. If there are systematic differences between these types of
observation it will add to the observational scatter of the observations but will not
materially affect the principal results of this analysis for the following reason. A
systematic delay in timing the second contact may be assumed to be cancelled in
the analysis by an equal advance in timing the third contact; and most transits
have roughly equal numbers of observations of both contacts. However, such
delays would alter the duration of a transit and hence the deduced correction to
latitude and adopted semi-diameter.

2.3 Time-systems and positions of observers

For transits in the 177th and 18th centuries, the times are usually given in local
apparent solar time, and in the 19th century in local mean solar time measured
from noon. In some cases sidereal time scales are used.

In general, a change of 1° in an observer’s geographical coordinates would
change the time of contact by less than 1 s. No observations had to be rejected
on this positional criterion alone. But, in order to preserve a precision of 1 s in the
conversion of the local times to universal time (i.e. Greenwich mean solar time
reckoned from midnight), the longitude is also required with this precision. For
observations made at an observatory, where the position was not published with
the observations, the longitude, latitude and height were taken, almost exclusively,
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from The Nautical Almanac and Astronomical Ephemeris for the year 1933, wherethere
is a list of the past and current (~ 1933) positions of the observatories with their
corresponding periods of activity. For observations made from places other than
observatories we took the positions from the Connaissance des Temps for the
year 1913, which gives an extensive list of the geographical positions of towns and
other places throughout the world. Where the local mean, or apparent, solar time
was given, and no accurate longitude could be traced, we adopted the position
given by Newcomb (1882). For observations made in the 20th century the times
are usually expressed in Greenwich mean solar time (from noon before 1925 and
from midnight thereafter). The geographical positions of those observers who only
recorded the name of the town or area from which the transit was observed, were
taken to the nearest 1’ from the index of The Times Atlas (196;7). When a sufficiently
accurate longitude could not be found, we rejected the observations: a total of 17
observations were rejected for this reason.

2.4 Publication of observations

All the observed times of internal contact, reduced where necessary to universal
time, the positions of the observers, and the references to the original sources of the
data, are to be published elsewhere (Morrison & Ward 1975). We also list there the
difference between the computed and observed times of contact which were derived
as explained in Section 4.1.

3. REDUCTION OF OBSERVATIONS

The observed times of contact are reduced to universal time (UT), whereas
the argument of time in the dynamical theories of the orbital motions of the Earth
and Mercury is (nominally) ephemeris time (ET). The maximum difference
between ET and UT during the period 1677 to 1973 is less than 3 min and, there-
fore, UT is a sufficiently good approximation to ET for the calculation of the
partial derivatives with respect to time of the parameters to be considered in our
analysis. We enter the ephemerides of the Sun and Mercury with the UT of
observed contact and calculate the separation of the limbs. The calculated separa-
tions are regarded as residuals comprising errors of observation, errors of the
orbital elements of the Sun and Mercury, and the differences between the values
ET(Sun) and UT for the instants of contact. We use the notation ET(Sun) to
indicate explicitly that the time scale concerned is based directly on the fundamental
definition of ephemeris time in terms of the Sun’s mean longitude; we implicitly
assume that in the theory the coefficients in the quadratic expression for the mean
longitude of the Sun are absolute constants.

The apparent geocentric right ascension, declination and radius vector of the
Sun and Mercury were calculated for each observed time (UT) of contact from
a computer program based on that given by Mannino et al. (1965) for the evaluation
of Newcomb’s theories (1891), thus avoiding some of the approximations made by
Newcomb in preparing his Tables (1898). (A few misprints in the numbers given
in Mannino’s paper were corrected.) The values of the elements used are given by
Newcomb (18935a) in The elements of the four inner planets and the fundamental
constants of astronomy, hereafter referred to as Elements. In particular, we note that
the value of precession used in the centennial motions of the perihelia (and nodes) is
5024"-93 and there are empirical terms of +10”45 and +43"-37 in lieu of the
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general relativity terms +3"-84, +43”-03 for the Sun (Earth) and Mercury,
respectively. A comparison of the spherical coordinates of the Sun evaluated by
using Mannino’s program with those calculated from Newcomb’s Tables reveal
differences as great as 0”07 in longitude which appear to arise from the summation
of several periodic terms. There is no evidence of a secular change. Therefore, the
basis of our computed positions should not strictly be regarded as Newcomb’s
Tables, but rather as that defined by the evaluation of the series given in Mannino’s
paper. There is little doubt that the two are sufficiently close for the purposes of
this investigation.

If («, 8") and (o, 8), respectively, denote the topocentric RA and Dec of the
Sun and Mercury, derived from the geocentric values for some observed time of
contact, then the calculated distance of centres, D, and the position angle of contact,
P, reckoned from the north point of the Sun, is computed from the usual relations:

cos D = sin &’ sin 8+ cos &’ cos & cos (a—a')
cos Psin D = cos ' sind—sin 8’ cos 8 cos (a—a')
sin PsinD = + cos & sin (x—a')

The rate of change of D, denoted D (in units of ”/s) is calculated numerically by
substituting the rates of change of (', 6’) and (a, 8) in the analytical derivative of
the first expression.
The residual separation of the limbs, Ag, for the time of an internal contact is
given by
Ao = D—(R'—R) (1)

where R’ and R are the computed apparent semi-diameters derived from the follow-
ing adopted values at unit distance:

R = 959"63
R=3"37.

These residuals are analysed to determine parameters associated with the time
scales and corrections to the orbital elements.

4. ANALYSIS OF RESIDUALS

The calculated residual, Ao, arises from three causes:

1. The difference, ET(Sun)— UT, denoted by AT (Sun);

2. Errors in the adopted values of the orbital elements in the theories of the
Sun and Mercury;

3. Errors in timing.

First, we analyse the residuals for the effects arising from errors in timing.

Fig. 1 is a histogram of the residuals (Ao) for the observations of contact 2 in
the transit of 1878. The normal frequency curve for the expected distribution of
errors using a mean and standard deviation estimated in the usual way from the
residuals is also shown. The histogram appears to be slightly asymmetrical. To
test for the goodness-of-fit of the residuals to the normal curve we calculated the
value of x2 and found it to be g by grouping the residuals into 10 classes in the
range —o0-9 to +0-9. If the observational errors followed the normal distribution
there would be about one chance in ten of x2 exceeding 12 for 7 degrees of freedom.
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Fic. 1. Histogram of the residuals of contact 2 for the transit of 1878.

Hence, we conclude that there is not strong evidence to suggest that the errors
depart substantially from the normal distribution. Some of the histograms of the
residuals for the contacts of other transits also display a similar amount of asym-
metry to that shown in Fig. 1, but collectively they show no preferred direction for
the bias. We therefore proceed on the assumption that when all the observations
of the transits are combined, the errors in timing will tend to follow the normal
law.

A more serious source of bias in the data is that all the observers may tend to be
late in timing contact 2 and early in timing contact 3, or vice versa. (The fact that
the mean is zero in Fig. 1 is accidental.) Whether or not an observer is likely to be
early or late in timing a particular contact will depend on many factors which are
alluded to in Section 2.2. In general, this delay or anticipation in timing will be
equal and opposite for contacts 2 and 3 and hence tend to cancel in our analysis for
determining values of the parameters associated with the time scales and the orbital
elements in longitude. But these systematic effects in timing could alter the dura-
tions of transits and hence affect the solution for corrections to the orbital elements
in latitude. We investigate the size of these effects in Section 5.3.

Since observations of the transits lead to the determination of corrections at two
points in Mercury’s orbit, the errors in the adopted elements will give rise to
constant and secular contributions to Ao, and not periodic ones.
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The difference, AT (Sun), is believed to consist of a secular change (due pri-
marily to the more or less uniform effects of tidal friction), irregular changes over
decades (probably due to core-mantle interaction) and quasi-periodic changes of
about a year or less (due primarily to changes in the circulation of the atmosphere).

In this paper we use two methods to find the contributions in the residuals,
Ag, due to AT (Sun) and the corrections to the orbital elements. In Section 4.1
we neglect the relatively small contributions due to errors in the elements, and
attribute the whole of the residual to the difference between the time scales,
AT(Sun). It is recognized that, by neglecting corrections to the elements, the
derived values of AT (Sun) will be altered by a small constant and linear term,
but their general behaviour with time will otherwise be unaffected. In Section 4.3
we adopt values of AT (Moon) from lunar observations and substitute these for
AT(Sun). We assume that AT (Sun) and AT (Moon) differ only by a quadratic
expression in time in which the constant and linear term are already known.
Equations of condition are then set up with unknowns for corrections to the orbital

elements and an expression varying with the square of time arising from the
difference between AT (Sun) and AT (Moon).

4.1 Solution for values of AT (Sun)

The residuals, Ag, were converted to time residuals, At, for the 2341 observa-
tions which had not been rejected for some reason in Section 2, by using the
expression

At = —AU/D.

Those lying in the range — 80 s to + 120 s are plotted in Fig. 2: 14 values lie outside
this range.

There are sufficient numbers of observations for all the transits beginning with
the year 1789 to make a reliable estimate of the standard deviation of the error
distribution for each transit. In calculating the standard deviations we excluded 11
observations giving values of AT (Sun) outside the range + 120 s since such values
appear to correspond to gross errors in timing or recording. We recall that Mercury
moves through its own diameter in about 1 min, so that after 2 min it is normally
well clear of the Sun’s limb, except near grazing, as in the transits of 1782 and 1957.

Estimates of AT (Sun) are formed by taking the means of the time residuals for
each transit:

AT(Sun) = At.
These estimates are given in Table I together with their standard errors and the
standard deviations of the time residuals from their means.

Points lying outside the limit of + 2 sd are circled in Fig. 2. Before the transit
of 1789 we adopted an approximate mean of zero and acceptance limits of + 1 min
for all the transits. Points lying outside these limits are also circled in Fig. 2. Of the
total of 2327 points plotted in Fig. 2, 146 lie outside our acceptance limits. Fig. 3 is
a plot of the mean values of AT (Sun) and their standard errors for each transit

beginning with 1789 calculated after the exclusion of the points shown circled in
Fig. 2.

4.2 Preliminary comparison of AT (Sun) with AT (Moon)
Fig. 4 shows the annual mean values of the difference,

AT(Moon) = ET(Moon)— UT,
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for the years 1663 to 1972 deduced from observations (mainly occultations) of the
Moon. The values are taken from the following sources with minor corrections as
indicated:

1663-1860 Analysis by Martin (1969), with 1-25s added to correspond to the
application of a correction to the right ascensions of the stars to reduce
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F1c. 2. Time residuals of internal contacts for the transits of 1677-1973.
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F1G. 3. Estimates of AT (Sun) for transits beginning with that of 1789. They are the means
of the time residuals shown in Fig. 2. The half-length of each bar is one standard error.
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F1G. 4. Annual mean values of AT(Moon) derived mainly from lunar occultations. The
analytical theory of the Moon’s motion used in their derivation included the Fones—Clemence
value of —22"-44 cy~2 for the tidal acceleration.

© Royal Astronomical Society ¢ Provided by the NASA Astrophysics Data System


http://adsabs.harvard.edu/abs/1975MNRAS.173..183M

FI975WNRAS. 1737 “183M!

192 L. V. Morrison and C. G. Ward Vol. 173

TaBLE 1

Mean values, their standard errors, and the standard deviations of the time residuals, At, for
each transit beginning with that of 1789. The means are estimates of AT (Sun). (Units: seconds)

Year Mean se sd Year Mean se sd
1789 +5 5 26 1894 -5 I 15
1799 +1 2 19 1907 +10 1 14
1802 +1 2 1T 1914 +21 2 18
1822 +12 12 34 1924 +25 2 24
1832 +5 2 15 1927 +25 2 16
1845 +8 3 19 1940 +23 1 18
1848 +5 3 17 1953 + 40 2 24
1861 +8 3 20 1957 +38 7 28
1868 -5 2 18 1960 +38 I 18
1878 o 1 14 1970 +56 I 18
1881 -9 3 16 1973 +54 I 15
1891 o 3 27

them from the catalogue equinox of the FK4 to that of Newcomb
(Newcomb’s equinox).

1861-1949 Discussion by Brouwer (1952), with 1-00 s added to the values after
1922 in order to reduce them to Newcomb’s equinox.

1950-1954 Astronomical Ephemeris for 1971, page vii.

1955-1972 Calculated from the relation

ET-UT2 = (TAI-UT2)+3224s

where the values of TAI—UTz2 were taken on July o1 of each year
from the circulars in the D series issued by the Bureau International
de ’'Heure. The constant term 32-24 s is based on an analysis of the
lunar occultation data for the period 1960-66 and allows for a correc-
tion of 1-34 s in order to refer the values to Newcomb’s equinox.

All the values of AT(Moon) taken from these sources were deduced from
observations using the same expression for the mean longitude of the Moon. The
expression was derived from that used in Brown’s (1919) Tables of the motion of
the Moon by removing his empirical term in longitude, thus reducing the motion
to gravitational theory. The amended expression includes the term +7"-1472 in
mean longitude, which arises from planetary perturbations. All the values of the
lunar acceleration (twice the coefficient of 72 in mean longitude) discussed in this
paper are in addition to this term. The following correction, derived from results
of Spencer Jones (1939) by Clemence (1948), was then added to the gravitational
expression in an attempt to bring the time scale of the lunar ephemeris, ET(Moon),
into agreement with that of the solar ephemeris, ET(Sun):

—8" 72  —26"4T —11"22T2,

where T denotes time in centuries measured from the epoch 1900 January o-5 UT.
The last term in this expression allows for a tidal acceleration in longitude of
—22"-44 cy~2, which will be referred to hereafter as the Jones—Clemence value.
The small differences between the other revisions of Brown’s theory, such as the

introduction of revised values for the astronomical constants, have a negligible
effect on the deduced values of AT (Moon).
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A visual comparison of Figs 3 and 4 reveals immediately the similar behaviour
of AT (Sun) and AT (Moon). This is to be expected since it was the close agreement
of the corresponding fluctuations in the longitudes of the Sun, Mercury and the
Moon which Spencer Jones (1939) used to demonstrate conclusively that the
Earth’s rate of rotation is variable.

We now proceed to a more detailed comparison of ET(Sun) with ET(IMoon).
We recognize that they may differ by a quadratic expression in T resulting from
possible errors in the empirical relation given by Clemence above. The constant
and linear term in that expression cannot be re-determined without a discussion of
observations of the Sun and Moon. We do not propose to undertake this here and
so we adopt these values in the present analysis. However, we do propose to solve
for a correction to the coefficient of 7'2. We also allow for corrections to the values
of the elements in Newcomb’s theories of Mercury and the Sun, except that we do
not consider corrections to the coefficients in the mean longitude of the Sun since
they are the basis for the definition of ET(Sun). With these considerations, we
develop the observational equation of condition for the analysis of the residuals
computed by relation (1).

4.3 Observational equation of condition

Fig. 5 shows the apparent configuration on the celestial sphere of Mercury (M)
and the Sun (S) at second contact during a November transit when Mercury’s
motion in right ascension is retrograde. The configuration is similar for a May
transit except that the transit occurs near the descending node. The position angle,
O, of the line of centres is measured from the normal to the ecliptic at S. It is
calculated from the position angle P, measured from the north point, using the
relation

Q =Pty
where 7 is given by
sinng = cosa’'sine [—9o°<n< +90°]

Pole of
Ecliptic

Poleof |  North
Orbit Point

East

Ecliptic

limb of Sun

FiG. 5. Diagrammatical representation of a November transit at the time of internal
contact (2) of Mercury (M) and the Sun (S) occurring near the ascending node of Mercury’s
orbit. Mercury’s motion in right ascension is retrograde.

13
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and e is the obliquity of the ecliptic. In the plane approximation the angle between
the normals to the ecliptic and orbit at S can be taken equal to 7 with an error not
exceeding 7 x 1075 rad. Newcomb (1882, pp. 440-455) gives a full account of the
derivation of the partial derivatives for changes in the heliocentric orbital elements
of Mercury and the Earth. We see no purpose in giving that derivation again here
and so we use his equation of condition with some modifications:

+sin (Q—i) Vsin (Q+1) Wt cos (QFi) N~ AR—i:D' AT(Sun) = ‘_:Ag.

(2)
The unknowns, ¥, W and N, have the same meaning as in Newcomb’s work. They
are linear functions of corrections to the elements of the orbits of Mercury and the
Earth for the epoch 1900-0 which are introduced in this form because observations
of transits only provide data for two points of the orbits: V is the average correction
in longitude for all the November transits and W for the May transits; N is princi-
pally the correction to the longitude of the node of Mercury’s orbit at both
November and May transits. The upper sign refers to the November transits and
the lower one to the May transits. We note that Newcomb (1882, p. 448, equation
3’) has omitted the minus sign in front of his coeflicient for N in the May transits.
This error was carried through to his equations of condition and therefore his
solution for the correction to the longitude of the node is erroneous. The approxi-
mations introduced by Newcomb in deriving these functions of the elements will
not materially affect the results of our analysis. The numerical expressions for the
functions are given in Section 5.2 where we discuss the results. These unknowns
are assumed to be linear functions of time, e.g. V = Vo+ VT, where Vj is the
value for the epoch 19000 and V is the centennial rate of change. The position
angle, Q, in the coefficients is equal to 270°— w, where w is the angle denoted by
Newcomb shown in Fig. 5.

We do not include an unknown for the effect of a correction to the adopted mass
of Venus in the theory of Mercury as Newcomb did, but, instead, prefer to allow
for its effect afterwards by adjusting the results (principally the motion of the
perihelion) for the value of the mass recently determined from space probes.
Separate corrections to the semi-diameters of Mercury and the Sun cannot be
reliably determined because of the close correlation in their coefficients. We only
consider an unknown, AR, for the semi-diameter of Mercury at unit distance, but
this could be regarded alternatively as a correction of — 16 AR to the semi-diameter
of the Sun. This correction has little meaning physically, due to the particular
nature of transit observations. It is introduced to prevent any contribution from
it in the residuals being absorbed by the other unknowns. In its coefficient, 7 is the
heliocentric distance of Mercury in astronomical units.

The last unknown in the observational equation (2) allows for the fact that in
our reduction the positions of Mercury and the Sun were computed from their
theories using the UT of observation instead of the ET(Sun). The factor, dJr, is
the ratio of the geocentric and heliocentric distances of Mercury: it reduces the
O-C, Ao, computed geocentrically (strictly, topocentrically), to the heliocentric
distance of Mercury.

4.4 Solution of observational equation

The observational equation (2) cannot be solved in its present form because
the constant and secular parts of AT (Sun) are highly correlated with Vy and ¥

© Royal Astronomical Society ¢ Provided by the NASA Astrophysics Data System


http://adsabs.harvard.edu/abs/1975MNRAS.173..183M

FI975WNRAS. 1737 “183M!

No. 1, 1975 An analysis of the transits of Mercury 195

(or Wo and W), respectively. This difficulty is avoided by substituting the values of
AT(Moon) for AT (Sun) in equation (2) and introducing instead an unknown vary-
ing as T'2 for the reasons given in Section 4.2. By making this substitution we are
assuming that the constant and linear parts of the quadratic expression given by
Clemence in Section 4.2, which relate the origin and rate of the two time scales,
ET(Sun) and ET(Moon), are correct, and that the coefficients in the expression
for the mean longitude of the Sun in Newcomb’s theory are being regarded as
basic constants. With these conditional prerequisites, we regard those parts of the
functions Vo, V, Wy and W which are dependent on corrections to the origin and
mean motion in longitude as arising only from corrections to Mercury’s elements.

It is fundamental to our analysis that none of the other unknowns in longitude
in equation (2) contains a term varying as T'2; that is, there are no accelerations of
significant size in the orbital motions of Mercury or the Earth, other than those
treated by Newcomb in his gravitational theories. If the gravitational constant, G,
were decreasing with time, as considered by Hoyle (1972), this would lead to the
relation

2G_n

G 7
where 7 is the mean motion. This would, therefore, introduce an acceleration, 7, in
the orbital motion which was proportional to the mean motion. By neglecting this
acceleration in our analysis, the deduced values of AT (Sun) and AT (Moon) would
both be in error by the amount (G/G) T2. In our equation of condition we are
solving for a differential correction, varying as T2, between the time scales ET(Sun)
and ET(Moon), and therefore any possible contribution from G would cancel.
For this reason, we interpret our solution for the term in T'2 as arising solely from
the tidal acceleration of the Moon.

In equation (2), we move the term in AT(Sun) to the RHS and substitute for
AT (Sun) the adopted values of AT (Moon) listed in Table II; and on the LHS we
introduce the term + 1-821 x $k£T'2. The factor, 1-821, is the reciprocal of the Moon’s
mean motion in units of s/”, and % is the correction to the Jones—Clemence value
of the Moon’s tidal acceleration. The equation of condition then becomes

+sin (0—i)(Vo+ VT)+sin (Q+3i)Wo+ WT) + cos (Q Fi)(No+ NT)
—; AR+ o911 f‘;l)kT2 = g[Ao+D AT(Moon)].  (3)

TaBLE 11

Values of AT (Moon) from occultations, using the Jones~Clemence value of —22""44 cy~2 for the
tidal acceleration. (Units: seconds)

Year AT Year AT Year AT

1677 —5'4 1799 +3°1 1894 —7°7
1697 —5'4 1802 +31 1907 +5°9
1723 —3'0 1822 +31 1914 +15°6
1736 —3°0 1832 +1°2 1924 +23°4
1743 —2°6 1845 +1°2 1927 +23°9
1753 —07 1848 +1'9 1940 +25°2
1756 —-0'2 1861 +27 1953 +31°0
1769 +3°1 1868 +o0-3 1957 +32°0
1782 +3°1 1878 —7°9 1960 +33°4
1786 +2-9 1881 —79 1970 4407
1789 +2°9 1891 =79 1973 +44°0
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The observational equations in eight unknowns were solved by the method of
least-squares: first, with all the observations (2341); and, secondly, without the
observations producing residuals lying outside the limits discussed in Section 4.1
and shown as circled points in Fig. 2. These observations comprised about 6 per
cent of the total. The two solutions for the unknowns and their standard errors are
displayed in Table III. The sum of the squares of the residuals from solution 2 was
less than half that from solution 1. We also made corresponding solutions by
excluding all the transits before 1789. (Table III, solutions 3 and 4.) It can be seen
from Fig. 2 that there are considerably fewer observations (152) for these transits
and we were not able to compute rigorous rimits for rejection of observations by
statistical methods alone.

The solution is not altered significantly by rejecting those observations with
residuals lying outside the restrictive limits derived in Section 4.1. But it seems to
be important in the solution for k& whether or not we include observations of the
transits before 1789. As expected, by shortening the period of the observations, we
increased the correlations between the unknowns and weakened the solution for
the acceleration. We can find no good reason to reject all the observations before
1789. Only six of the original 154 made in that period fall outside the range of
Fig. 2. Except for the grazing transit of 1782, they are no more disparate than the
observations after 1789, though fewer in number. We adopt solution 2 in our
discussion of the corrections to the orbital elements.

§5. DISCUSSION OF RESULTS

5.1 Solution for tidal acceleration of Moon

The values of k in Table III, added to the provisional acceleration of
—22"+44 cy~2, give the results for the tidal acceleration shown in the third column
of Table IV. We have tested that our solution for the acceleration is independent
of our initial approximation. It is important to verify this because the separation
of the unknown in 7'2 from the other unknowns in equation (3) may not be as
complete as is desired, although none of the correlation factors between the un-
knowns was greater than o-5. The test was made by starting with the value
— 42”44+ 6" cy~2, found by Morrison (1973) for the acceleration and substituting
his values of AT(Moon), derived using this acceleration in the observational
equation (3), as described in Section 4.4. The solutions for k& were close to the
previous ones: the resulting values of the acceleration are given in Table IV.

We have investigated the effect on the residuals of holding the value of the
acceleration at —42"-44 cy~2 (k = —20" cy~2) and solving for the remaining seven
unknowns in Table ITI. The resulting sum of squares of the residuals was increased

TaBrLE IV

Solutions and standard errors for the tidal acceleration of the Moon. (Units: ” cy—2)
Initial approximation

—22°44 —42°44

Transits Observations (Jones-Clemence) (Morrison)
1677-1973 (33) 1. All —24'2%t1°'0 —24'5%1°'0
2. Within limits —25°7+0°7 —26:0+0'7

1789-1973 (23) 3. All —27°4%1°6 —281+1°6
4. Within limits —27'9t1°1 —28-5+1°1
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from 77865 in solution 2 of Table III to 9g922. This increase in the sum of squares
for the loss of one degree of freedom is certainly significant. But this does not
exclude the possibility that systematic biases in the timing of the contacts may have
distorted our result. We show later, when discussing the correction to the motion
of the node, that there are biases in the data which probably affect that result;
but it is very difficult to imagine why these biases should tend to depart as 72
over the 300-yr period. The technique used in observing transits has not changed
substantially over the period and any increase with time in the resolving power of
telescopes would tend to alter the timing of contacts 2 and 3 by equal and opposite
amounts, thus changing the observed duration but not the overall mean time. If the
true value of k were —20” cy~2, this would imply a bias in timing of the transits of
+18 s T2, which seems very unlikely even from a cursory inspection of Figs 2
and 3. These data cannot be reconciled with a value of the tidal acceleration of the
Moon as great as —42" cy~2 and possible changes to the values of the orbital
elements of Mercury and the Earth do not alter this conclusion.

In view of the discordance of the results in Table IV, we think that the standard
error of +o0+7 for solution 2 is underestimated, and that the most likely result
from all the data for the Moon’s tidal acceleration is in the range —26+ 2" cy—2.

5.2 Corrections to Mercury’s orbital elements

The six unknowns, Vo, V, Wy, W, Ng and N, shown in Table ITI, are functions
of corrections to values of the orbital elements of Mercury and the Sun. The

expressions given by Newcomb (1882, pp. 447, 448), and adjusted slightly
(Clemence 1943, p. 53) are:

Vo= +149 ALg—049 Amg—1-08 Aep+1°19 ¢’ Amp' +1:58 Aey’ (4)
Wo = 40772 ALg+028 Amg+0'9o Aeg—1-11 €' Amp’ — 1-62 Aey’ (5)
Ny = sini (Afy— Aly'). (6)

These corrections have the following meaning:

ALy is the correction to the mean longitude of Mercury,

Amy is the correction to the longitude of the perihelion of Mercury’s orbit,

Aby is the correction to the longitude of the node of Mercury’s orbit,

Aey is the correction to the eccentricity of Mercury’s orbit expressed in
seconds of arc,

Aey’ is the correction to the eccentricity of Earth’s orbit expressed in seconds
of arc,

¢’ Amy’ is the correction to the longitude of the Earth’s perihelion multiplied by
the eccentricity of the Earth’s orbit (o-01675),

Aly is the correction to the true longitude of the Earth: it is related to the
other corrections by,
Aly' = —2¢ Amg’ cos (L' — ')+ 2Aey’ sin (L' — '), (7)

where L’ is the mean longitude of the Earth.

In the expressions for Vo, Wy and Aly’ we have omitted a correction for the
mean longitude of the Earth (Sun) because in our analysis we have adopted
Newcomb’s expression as the basis of the definition of ET(Sun). The equations
for the centennial variation of the elements measured from the epoch 1900-0 have
the same coefficients as above.
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5.2.1 Corrections to the constant parts of Mercury’s elements. We adopt results
from meridian circle observations in order to eliminate three of the unknowns in
equations (4) and (5). From a discussion of meridian circle observations of Mercury
made in the period 1765-1937, Clemence (1943, p. 49) found the following correc-
tion to the linear combination of three of the elements:

Aeg+ 1356 Amy’ —3-00Aey’ = — 0”40+ 0"-04 (pe). (8)

Adams & Scott (1968) analysed meridian circle observations of the Sun made

between 1956 and 1962 and found the following corrections to the Sun’s elements
(p. 318, Table 16):

e’ Amy’ = —0"19+ 0"-01 (pe)
Aey’ = —0"15+0"-01 (pe).

We insert these values in relation (8) and, converting the probable errors to standard
errors, we find

Aeg = —0"-59+0"-08.

With these values for ¢’ Amy’, Aey’ and Aey and our solutions for Vy and Wy
(Table III, solution 2) we find from relations (4) and (5)

ALy = +0"30+0"-08
Amp = +0"-91+0"-24.

We cannot find the correction to the node, Afy, from relation (6) without first
eliminating Aly’. We see from relation (7) that Aly’ has equal and opposite values
in May and November. If we insert the corrections to ¢’ Amy’ and Aey’ given
above in relation (7), we find

Aly’ = +0"-03 in May
and
Aly’ = —0"-03 in November.

As we would expect, the correction to the true longitude of the Earth is com-
paratively small and we therefore neglect it in the expression for Ny. Taking the
value of Ny from Table III (solution 2) and sin { = o-122, we find from relation (6)

Aby = —5"7+0"6.

5.2.2 Corrections to the secular variations of Mercury’s elements. Apart from
the value of the general precession of the Earth’s equator on the ecliptic and the
empirical terms in the perihelia, Newcomb’s values for the secular variations of the
elements of Mercury and the Sun are derived from theory, and not observation.
The component parts of these theoretical values are directly proportional to the
masses of the disturbing planets. We now have more accurate values of the masses
than were available to Newcomb and we therefore compute corrections to
Newcomb’s values of the secular variations due to the fractional changes in the
masses. This computation is facilitated by the use of tables prepared by Newcomb
(1895b), which set out the contributions to the secular variations due to the action
of each planet. In Table V we list the reciprocals of the values of the masses used
by Newcomb and those provisionally recommended by the IAU Commission 4
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TABLE V
Reciprocal masses of planets
IAU Fractional
Newcomb Commission 4  change in mass
Mercury 6000000 6023600 —0°00392
Venus 408000 4085235 — 000128
Earth + Moon 320390 3289002 +0-00149
Mars 3093500 3098710 — 000168
Jupiter 104735 1047355 000000

Working Meeting on Astronomical Constants and Ephemerides, Washington 1974.
The effects of the changes in the masses of the planets beyond Jupiter are insignifi-
cantly small for the purposes of this paper. Multiplying the terms given by
Newcomb (1895b, pp. 375, 377) by the fractional changes in masses listed in
Table V and adding the contributions, we find the following corrections to
Newcomb’s values of the secular variation of the elements:

Changes to centennial variation of the elements resulting from the revision of planetary
masses in Table V

Aé = —0"002 cy1

A# = —0"222 cy~!

sini A = +0"-013 cy™!

A¢' = +0"-001 cy!

¢ A7’ = —o"o10cyl

A(x" sin L") = —o"-oro cy!

A (k" cos L") = +0"-038 cy L.

The symbols «” and L” have the same meaning as in Newcomb’s work. ‘They define
the slow rotation of the ecliptic by the amount «” about a slowly-moving diameter
in longitude L” due to the gravitational action of the planets on the Earth: it is
usually called the planetary precession. The value of the expression

— A(x" sin L") cot ¢,

where e is the obliquity of the ecliptic, is the correction to Newcomb’s value of the
general precession due to changes in the masses of the planets. Substituting the
value above for A(x” sin L"), we find it is equal to +0"-02. This correction is very
small relative to the uncertainty associated with the value of luni-solar precession
(% +0"1) and so we shall ignore it when discussing corrections to Newcomb’s
value of general precession.

We now correct Newcomb’s value for the motion of the Earth’s perihelion by
removing his empirical term of + 10”45 cy~! and replacing it by +3"-84 cy~! due
to general relativity, and removing his value of +5024"-93 cy~ for general preces-
sion and replacing it by + 5026”74 cy~! determined recently by Fricke (1967) from
stellar kinematics. These steps are set out below:

Corrections to Newcomb’s value for the motion of the Earth’s perihelion

—10"45 cy~! Newcomb’s empirical term (Elements, p. 184)
+13"-84 cy™1 General Relativity
— 5024”93 cy~! Precession in Newcomb’s theory (Elements, p. 186)
+ 5026”74 cy~1 Recent determination by Fricke (1967)

An' = —4"-80ocy 1l Total
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S A = —0"-080 cy?
— 0”010 cy~! Correction from revision of masses above

Sl Ar = —o0"-090 cy1

We substitute this final correction for ¢’ A#’, together with those for Aé’ and
Aé derived from the corrections to the masses, in the expressions for V and W
(relations (4) and (5)):

+149 AL —049 A —1-08 Aé+1°19 € A%’ +1:58 Aé' = +1"17+0"13
4072 AL +028 A7+ 0'go Aé—1'11 ¢ A7’ —1:62 A’ = +0"776 + 0" 12.
We have inserted solution 2 from Table III for ¥ and W. Hence,
+1°49 AL —049 A% = +1"271+0"13
+072 AL+ 028 A% = +0"661+0""12
assuming that all the uncertainty arises from AL and As. The solution is
AL = +0"-88+0" 10 cy!
A7 = +0"-09+0"28 cy~1.

The correction, A, is to be applied to the provisionally adopted value for the
motion of Mercury’s perihelion in Newcomb’s theory in order to bring it into
agreement with observation. We have for the epoch 1900-0:

Motion of perihelion in Newcomb’s theory (Elements, + 5599”76 cy1
p. 185)

Correction from this paper +0"09+0"3 cy1

Revised observed motion of perihelion +5599”7-85+ 0”3 cy!

The theoretical motion of the perihelion due to Newtonian gravitational attraction
is given by the value in Newcomb’s theory, less his empirical term. The longitude
of perihelion is measured from the mean equinox of date, along the ecliptic to the
ascending node, and then along the orbit. We revise his value for the motion of the
perihelion in the plane of the orbit due to the changes in the planetary masses
given above and substitute Fricke’s value for the general precession. The contribu-
tions to the motion of the perihelion due to changes in the motions of the node and
the plane of the ecliptic (Elements, p. 184) are negligible. We have for the epoch
1900-0:

Motion of perihelion in Newcomb’s theory + 5599”76 cy1

Less Newcomb’s empirical term (Elements, p. 184) —43"37 cy1

Correction for change in masses (this paper) —0"22+0"01 cy !

Remove value of precession in Newcomb’s theory — 5024”93 cy !
(Elements, p. 186)

Add revised value of precession (Fricke 1967) + 5026”74 + 0”10 cy~1

Revised computed (Newtonian) motion of perihelion +5557"-98 + 0"-10 cy1

.. Excess motion of perihelion of Mercury:
Observed minus computed (Newtonian) = +41"-9 +0":3 cy~L.
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The value given here for the standard error does not include any allowance for
the systematic errors; these are discussed in Section 5.3 and the final result is
given in Section 5. 4.

"The correction to the motion of the node in Newcomb’s theory is obtained from

N = sini(Af— Al).

Since the value for the mean motion of the Sun in Newcomb’s theory is treated as
an absolute constant for the purpose of this analysis (see Section 4.2), we have

Al = —2¢' A7’ cos (L'=7")+2 Aé sin (L'—7').
If we insert the values for ¢’A#" and Aé¢’ which we derived above from corrections
to the planetary masses and the general precession we find Al’ = —0"-10 cy~! in

May and +0":10 cy~1 in November. The unknowns in latitude for the May and
November transits were combined in the equation of condition on the assumption
that Al’ x sin  would be much smaller than the uncertainty of N. This is the case,
so we neglect Al’ and find from solution 2 that

Ab = —0"2+1"0cy L,

This is the correction to be applied to Newcomb’s theoretical value of 4266”75 cy—1
for the motion of the node in order that it should agree better with observation.

Motion of the node in Newcomb’s theory (Elements, p. 185) + 4266”75 cy1
Correction from this paper —0"2+1"0cy"1

Revised observed motion of the node + 4266”5+ 1”0 cy!

Newcomb’s theoretical value of the motion of the node should be revised for
the changes in the planetary masses and the general precession. We have already
calculated the change with respect to the fixed ecliptic of 19oo-0. The contribution
due to the change in the motion of the ecliptic is calculated from the expression
given by Newcomb (Elements, p. 183):

sini AG = — A[«” cos i sin (L”— 0)] cy-1.
Inserting the values calculated above for A(x” sin L") and A(«x” cos L"), and taking

0 = 47°09’, we find A6 = +0"28 cy~L. Bringing together the corrections to
Newcomb’s value, we have:

Motion of the node in Newcomb’s theory (Elements, +4266”-75 cy1
p. 185)

Correction with respect to the fixed ecliptic of 1900-0 +0"11+0"01 cy1
(this paper)

Correction for the motion of the ecliptic (this paper) +0"-28 + 0”01 cy~1

Remove value of precession in Newcomb’s theory —5024":93 cy1
(Elements, p. 186)

Add revised value of precession (Fricke 1967) ' - 4+5026"74 0" 10 cy~1

Revised computed (Newtonian) motion of the node +4268":9 + 0”1 éy—l

.« Excess motion of the node of Mercury:
Observed minus computed (Newtonian) = —2"-4+1"-0 cy~L.

"This result does not include any allowance for systematic errors.
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5.3 Systematic errors

The biases in timing contacts 2 and 3 will usually be in the opposite sense and,
therefore, will add in the observed duration of a transit, but will subtract in the
mean of the contacts taken together. For this reason, these biases should cause
greater systematic errors in the deduced correction to latitude (/V), than to longitude
(V and W). However, the biases in duration will contribute opposite amounts to the
solution for IV depending on which hemisphere of the Sun the transit takes place;
so, the resultant systematic corrections in N, and V and W, may be considered as
being about equal in size. Since the coefficients of N in the observational equation
(2) for November and May have opposite signs, the resultant systematic error due
to biases in timing will enter the two solutions for N in the opposite sense. Thus, half
of the difference between the two solutions will give an estimate of thesystematic
error in the solution for IV, and hence V and W.

The separate solutions for the November and May transits, excluding observa-
tions which produced residuals lying outside the limits discussed in Section 4.1,
are displayed in Table VI. (¢f. Solution 2 in Table III.)

From the differences between the solutions for Ny and N in Table VI, we
estimate the systematic errors of our results for the various orbital parameters to
be as follows:

Estimated systematic errors

ALy +0"2

Ay +0"4

Aby + 2"

AL +0"2 cy!
A +0"4cyt
Af +2" cy L.

5.4 Excess motion of Mercury’s perihelion

All the recent discussions of the optical data (Clemence 1943; Duncombe 1958;
Wayman 1966), which find a value close to 43" cy~! for the non-Newtonian motion
of the perihelion of Mercury, are based on the observed value deduced by Clemence
(1943) from a comprehensive study of meridian-circle and transit observations. For
the latter, he took the mean O-C times for each contact given by Williams (1939)
for the transits of 1799-1927 and added data for the transit of 1940. Williams took
his mean observed times of contact for each transit, except that of 19277 which he
reduced himself, from the work of Newcomb (1882) and Innes (1925). Therefore,
in his analysis, Clemence had a total of 25 observational equations relating the
unknowns to the mean values of O-C for each observed contact of the transits
from 1799 to 1940. For the transits before 1927 Clemence (via Williams) adopted
the weights for the observational equations deduced by Innes from the internal
agreement of the observations of each contact. '

We find the following results for the correction to Newcomb’s value of the
motion of the perihelion from the work of Clemence (1943, p. 57; solving his
equations in K and H, after substituting our values for Aé, ¢’A7" and Aé’, and
converting his probable errors to standard errors):

A = +0"8+0"7cy ! (Clemence; transits).
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TaBLe VI
Separate solutions for the unknowns in equation (3) for the November and May transits
Transits
November (23) May (10)
1348 obs. 832 obs.
Vo (") +0-14 —
+o'11
V ("cy™) +1-18 —
+0-16
Wo () — +o0-51
+o-03
W (" cy) —_ +0-88
+0-08
No (") ~0°72 —-0°34
to-11 +o:o9
N (e —o-03 +0°37
+o0-18 +o-15
R() +o0-05 —0:07
+o-02 +o0-02
k(" cy?) —-3'5 —2°9
to-9 t1°4
Z (residual)? 6929 897
Variance §°2 I°1

From his analysis of meridian—circle observations (Clemence 1943, p. 57, equation
in IT with ¢’ A7’ = —0"-085 and A¢’ = o), we find:

A7 = +0"2+1"0cy ! (Clemence; meridian—circle).
Our result is:
A7 = 4+0"1+0"5cy"! (this paper).

We have combined the standard error from the least-squares analysis with the
systematic error estimated in Section 5.3. If Clemence’s result from the transits
is used in the computation of the non-Newtonian motion of the perihelion, we
obtain +42"6+0"7cy~l: our solution gives +41”-9+0"5cy-l. Clemence’s
result is not inconsistent with ours, but we believe that ours is to be preferred since
we have used all the data in our analysis, rather than adopting mean times of
contact, and we have doubled the time-range by including 16 more transits.
Provided our estimate of the systematic error is realistic, our result would indicate
that the relativistic component in the motion of Mercury’s perihelion is slightly
less than the value of 43"-03 cy~! (Duncombe 1958) predicted by Einstein’s general
theory of relativity.

5.5 General precession of the Earth’s equator

In order to derive the excess motions of the perihelion and node of Mercury’s
orbit we have to reduce our Earth-based observations to an inertial frame by
removing the precession of the Earth’s equator. In our analysis we have adopted the
value of general precession derived by Fricke (1967) from stellar kinematics.
Alternatively, we could have adopted the value of +43"-03 cy~! predicted by the
theory of general relativity and regarded the general precession as the unknown
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to be determined from the motions of the perihelion and nodes. However, so long
as there is some uncertainty about the size of the relativistic effect, and an un-
certainty of about +2” cy~! in the observed motion of the node, there is little
possibility of deriving a reliable and independent value for the general precession
from these data.

6. CONCLUSIONS

We have analysed about 2400 observations of the universal times of internal
contact for the transits of Mercury in the period 1677-1973 in order to determine
corrections to Newcomb’s values for the orbital elements of Mercury. The distor-
tions in the observations due to the non-uniformity of the universal time scale were
removed by reducing the observations to an ephemeris time scale, which had been
determined previously from observations of the motion of the Moon. It was
recognized that this ephemeris time scale might itself depart from uniformity with
the square of time due to a possible error in the adopted value of the tidal accelera-
tion in the lunar ephemeris. So, in the observational equation of condition, we
included an unknown in T2, as well as constant and linear terms in 7 arising from
corrections to the orbital elements. The solution of the observational equations
by the method of least-squares lead to the following results:

Tidal acceleration of the Moon = —26" + 2" cy~2.

The uncertainty comprises a standard error of +0”+7 and a contribution of about
+ 2" for the total systematic uncertainty which was estimated from the spread of
the results for different sub-sets of the data.

The corrections to Newcomb’s values of the orbital elements of Mercury are:

Mean longitude +0"3+0"2+(0"9+0"2) T
Longitude of perihelion +0"9+0"5+(0"1+0"5) T
Longitude of node —5"7+2"1—(0"2+2"2) T
(Eccentricity ~0":59+0"08),

where T is centuries from the epoch 19oo January o-5 UT. The uncertainties are
standard errors combined with estimates of the systematic errors. In deriving
these corrections, we adopted results from meridian—circle observations for the
constant of eccentricity of Mercury’s orbit and for the constants of eccentricity and
longitude of the perihelion of the Earth’s orbit. The values of the theoretical
centennial variations of these elements were revised using recent determinations
of the planetary masses and the general precession (5026”7 cy~1). The corrections
given above to the centennial motions of the node and perihelion of Mercury’s
orbit lead to the following results when compared with Newtonian theory:

Excess motion of the node: —2"4+2"2cy?
Excess motion of the perihelion: +41”:9+ 0" 5 cy1.

The correction to the motion of the node is not significant, but that to the perihelion
does appear to be slightly less than that predicted by Einstein’s general theory of
relativity.
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