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ABSTRACT

  
The time based on the rotation of the earth around its own axis is known as Universal Time (UT), it is not a uniform time 
scale. Another time scale based on the revolution of earth in its orbit around the sun, called Terrestrial time (TT). The 
difference between TT and UT is known as delta T (∆T). ∆T varies slowly but rather irregularly. The exact value of ∆T 
cannot be predicted because the rate at which earth’s rotation is slowing down is not known. Therefore, delta T can only 
be deduced form observations. The knowledge of the exact value of ∆T is essential for predicting the correct time of 
astronomical event or to confirm the time of Historical events. If ∆T is not considered the result may contain an error of 
several seconds. The value of ∆T can be found in almanacs, where it is given in seconds of times at January 1 for each 
year but for some calculation of the astronomical events we require its values at any date of the year. In such cases an 
approximate formula can make the life simple. This paper discuss a polynomial approximation to ∆T for the range of 
1620 to 2000 AD published by Jean Meeus and Larry Simons and gives a modified version of this approximation which 
is much more accurate. 
 
Keywords: Polynomial Approximation for ΔT, universal time (UT), astronomical event, historical events, terrestrial 
time (TT), almanacs. 
 
INTRODUCTION 
 
Historically, we have used the repetitive cycles of 
celestial phenomena to serve as the basis for two 
components that are involved in our measurement of time. 
First, we make use of a phenomenon perceived to be 
repeatable with sufficient regularity. Second, we need to 
devise a convenient means to label the repetitions of this 
phenomenon. These elements correspond to the two 
properties of time measurement: interval and epoch. The 
repetitive celestial bodies are the moon, sun, stars etc. The 
rising and setting of the Sun has provided the day; the 
phases of the Moon have provided the month and the 
position of the Sun with respect to the stars gives us the 
year. 
 
In the beginning, the motion of objects mentioned above 
forms the bases of time measurement. Nowadays three 
different time scales have been in use for modern 
astronomy as well as for civil life (Nelson, 2001). The 
first one is the universal time (UT), based on the rotation 
of earth around its own axis (McCarthy, 2004). The 
second is Ephemeris time (ET), based on the revolution of 
earth in its orbit around the sun and the third one is 
Atomic time (AT) based on the quantum mechanics of the 
atom (Nelson, 2001). 
 
Unfortunately almost all naturally discovered periodic 
motions are not as simple and periodic as we thought of 
them earlier. It is also true in case of axial motion of 
earth. Therefore, Universal time (UT), as it is based on 
the rotation of the earth, is not a uniform time scale 

because the rotation of the Earth is slowing down. 
Moreover the rate of this slowing is not constant, instead 
has unpredictable irregularities (Meeus, 1998). On the 
other hand Ephemeris time (ET) is not affected by the 
irregularities of the spin motion of the earth. In this 
context it is clear that ET and UT are not perfectly in 
agreement. Moreover time is a dynamical quantity and it 
could vary from point to point in space (coordinated 
time), because of this reason in 1984 the ET was replaced 
by Terrestrial Dynamical time (TDT), which is define by 
an atomic clock located at the origin of a coordinate 
system for which this time is being defined (Guinot, 
1998). 
 
Now TDT, renamed as “Terrestrial Time” (TT), is 
considered to be uniform time scale, and used as the time 
argument for the predictions of the astronomical events in 
dynamical theories (Seidelmann, 1985). Our clocks, 
locked on UT are gradually slowing down with respect to 
the uniform TT and hence using UT, astronomical events 
seem to occur earlier than predicted in a uniform time 
scale. 
 
The difference between TT and UT is generally called 
Delta T (∆T) (Meeus, 1998, 2000, Robert, 2002). ∆T 
varies slowly but rather irregularly with time as shown in 
figure 1(Meeus 1998). 
 
The exact value of ∆T cannot be predicted and hence can 
only be deduced form observations. The knowledge of the 
exact value of ∆T is essential for predicting the correct 
time of an astronomical event such as eclipses, 
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occultation, transits etc (Robert, 2002). If ∆T is not 
considered the predicted value may contain an error of 
several seconds. In some cases this error could be in 
minutes. 
 
POLYNOMIAL APPROXIMATION: 
 
1. Meeus & Simon approximation 
The value of ∆T can be found in almanacs for January 1 
of each year but for calculation we may require its values 
for any date of a year. For this purpose Jean Meeus and 
Larry Simons published a paper in 2000, which gives a 
set of polynomial approximation of ∆T for the range of 
years 1620 to 2000 (Meeus 2000). Meeus and Simons 
divided the whole curve (1620 to 2000) into eight 
segments and they determined a polynomial for each 

segment. Using these empirical formulae we can calculate 
the value of ∆T at any instant of the year for the range 
1620 to 2000 AD. The formula to be used is  
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Fig. 1. Variation of ∆T between 1620 to 2000. 
 
Table 1. Coefficient of Meeus & Simon Approximation. 

 
Time Interval 

(Year) k a0 a1 a2 a3 a4

1620 to 1690 3.45 40.3 -107.0 50 -454 1244 
1690 to 1770 2.70 10.2 11.3 -1 -16 70 
1770 to 1820 2.05 14.7 -18.8 -22 173 6 
1820 to 1870 1.55 5.7 12.7 111 -534 -1654 
1870 to 1900 1.15 -5.8 -14.6 27 101 8234 
1900 to 1940 0.80 21.4 67.0 -443 19 4441 
1940 to 1990 0.35 36.2 74.0 189 -140 -1883 
1990 to 2000 0.05 60.8 82.0 -188 -5034 0 

 
 

∆T=a0+a1 u+a2 u2+a3 u3+a4 u4 

 

This is a four-degree polynomial for which the 
coefficients (a0 to a4) are given in the table 1 and the ‘u’ is 
given by 

100
)2000( −

+=
yearku  

The above formula shows that u is measured in centuries 
from the middle of the time interval mentioned in the first 
column of table 1.The purpose of k is simply to take the 
independent variable u as small as possible during that 
interval. 
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It is important to note that each expression is valid only 
for the period mentioned in the first column of the table 1, 
and if used for the different range the error could be very 
large. Figure 2 shows the absolute error for the whole 
range of 1620 to 2000. Note that the error is very large in 
the beginning and exceeds 3 sec.  Then it is decreases as 
we proceed to recent years. It should be noted that 
initially error is very large (up to 3.2 seconds) and this 
large error motivated us to search for a new set of 
polynomials for which the error does not exceed the one-
second limit. The next section shows that we have been 
successful in finding such an approximation. 

 
2. Developed Version Of Approximation:  
To find a new approximation which contains a maximum 
error of ±0.7 sec. we used least square method with a 
polynomial of four-degree to fit the data of figure 1. In 

order to compare our results with previous approximation, 
we keep all the parameters same as chosen by Meeus and 
Simons i.e. we use this algorithm for four degree and 
divided the whole curve of ∆T in eight segments with 
exactly same intervals as used by Meeus and Simons and 
also introduced a parameter k which minimize ‘u’ in a 
specified interval. The coefficients, we have calculated 
for the four-degree polynomial, are shown in the table 2. 
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Fig. 2. Depicts the time variation of absolute data. 
 
Table 2.Coefficient of Developed version of Approximation 

 

Time Interval 
(Year) k a0 a1 a2 a3 a4

1620 to 1690 3.45 42.453 -108.62 46.908 -451.441 1273.369 
1690 to 1770 2.7 11.364 9.234 2.457 -1.194 45.161 
1770 to 1820 2.05 15.304 -22.998 -27.101 281.575 122.178 
1820 to 1870 1.55 6.085 14.218 103.619 -598.093 -1496.75 
1870 to 1900 1.15 -5.571 -11.542 -40.46 -186.858 11825.13 
1900 to 1940 0.8 21.462 67.422 -448.338 -11.948 4655.586 
1940 to 1990 0.35 36.126 73.93 212.64 -137.364 -2383.49 
1990 to 2000 0.05 60.798 81.694 -174.854 -4823.23 -2039.63 

 
Note that although these coefficients are different from 
Meeus & Simons approximation’s coefficients, but the 
procedure for finding the value of ∆T is somewhat similar 
in both techniques. This new approximation gives more 
accurate results. This accuracy is a result of the selection 
of more appropriate coefficients. Figure 3 shows the 
absolute error for the whole range of 1620 to 2000. This 
figure also proves that error is within ±0.7 second.   
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To compare it with previous result lets take an example. 
Let’s calculate the value of ∆T for the year 1627 by using 
both approximations, the year in the first interval so we 
use first polynomial. The value of ‘u’ is –0.28 for 1627. 
When we use Meeus approximation we get ∆T= 91.79sec. 
Whereas, we get ∆T= 94.28 sec by using this new 
approximation the exact value of ∆T is 95 seconds.   
 
CONCLUSION 
 
The above example clearly shows that new approximation 
gives better results. It is clearly shown by this graph that 
the absolute error does not exceed ±0.7 second. In fact 
maximum error is 0.7005 seconds, which occurs for the 
year 1791 AD. Now by using this approximation we can 
predict more accurate time for astronomical events. 
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Fig. 3. Yearly variation of absolute error 
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